Abstract

ABSTRACTThe thermodynamic stability of diamond (100) surfaces as a function of degree of hydrogen and oxygen-related termination coverage has been theoretically studied using DFT techniques. The results show that an exchange of the hydrogen atoms with hydroxyl groups is disfavored, whereas a corresponding exchange with oxygen atoms (in the ketone or ether position) is energetically preferred. The adsorption of up to about 50 % oxygen coverage (ether position) is, however, largely disfavored compared to a fully hydrogen-terminated surface. However, this oxygen termination will be energetically improved as the coverage increases above the 50 % level. The adsorption energy per terminating species (at 100% surface coverage) is −4.13 eV, −4.30 eV, −5.95 eV and 6.21 eV for H, OH, O(ketone) and O(ether) species, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.