Abstract

This paper presents an approach for grasp planning and grasp forces optimization of polygon shaped objects. The proposed approach is an intelligent rule-based method that figures out the minimal number of fingers and minimal values of contact forces. These fingers are required to securely grasp a rigid body in the presence of friction and under the action of some external force. This is accomplished by finding optimal contact points on the object boundary along with minimal number of fingers required for achieving the aforementioned goal. Our system handles every object case independently. It generates a rule base for each object based on adequate values of external forces. The system uses the genetic algorithm as its search mechanism, and a rule evaluation mechanism called bucket brigade for the reinforcement learning of the rules. The process mainly consists of two stages; learning then retrieval. Retrievals act on line utilizing previous knowledge and experience embedded in a rule base. If retrievals fail in some cases, learning is presumed until that case is resolved. The algorithm is very general and can be adapted for interface with any object shape. The resulting rule base varies in size according to the degree of difficulty and dimensionality of the grasping problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.