Abstract

Many applications of active sound transmission control (ASTC) require lightweight partitions, high transmission loss over a broad frequency range, simple control strategies, and consistent performance for various source and receiving space conditions. In recent years, researchers have begun to investigate active segmented partitions (ASPs) because of their potential to meet such requirements. This paper provides a theoretical and numerical analysis of four ASP module configurations that are candidates for these applications. Analogous circuit methods are used to provide normal-incidence transmission loss and reflection coefficient estimates for their passive and active states. The active control objective for each configuration is to induce global vibration control of various transmitting surfaces through direct vibration control of a principal transmitting surface. Two characteristic single-composite-leaf (SCL) configurations are unable to use the strategy effectively. However, design adjustments are investigated to improve their performances. Two double-composite-leaf (DCL) configurations use the strategy much more effectively to produce efficient global control of transmitting surface vibrations and achieve high transmission loss over a broad frequency range. This is achieved through a minimum volume velocity condition on the source side of each module. One DCL configuration enhances module isolation in full ASP arrays while satisfying other design and performance criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call