Abstract

This paper reports an attempt to understand theoretically the red shifts seen in the benzene ultraviolet spectrum upon changing from gas to the liquid phase. The theoretical analysis is performed through a framework which brings together Quantum Chemistry and Classical Statistical Mechanics of molecular liquids. As it is discussed herein, the influence of the liquid phase on the individual molecular properties is taken into account by means of a perturbation term included in the effective molecular Hamiltonian. Such a perturbation depends explicitly on both the chemical nature and the static structure of the liquid surrounding the molecule under study. In order to simulate the vibronic couplings, which make the benzene |Ddforbidden|DD bands1La and1Lb have nonzero intensity, random displacements of the nuclei of benzene have been employed in this introductory work. The calculations involve the CNDO/S procedure and the atom-atom radial distribution functions of the liquid sample. The results account for the large red shift (≃20 nm) undergone by the band1La.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call