Abstract

The purpose of this theoretical paper is to examine the effects of placental metabolism on fetal oxygenation under conditions of limited oxygen availability. Features of the mathematical model used here include: (1) ordinary non-linear differential equations defining the oxygen partial pressure profiles in the maternal and fetal streams for a concurrent flow pattern; (2) the presence of maternal and fetal blood flow shunts; (3) consumption of oxygen by a metabolically active placenta; and (4) modification of the fetal input to the placenta by changing the rate of fetal oxygen consumption in response to changes in the rate of oxygen delivered to the fetus via the umbilical vein. Model parameters were chosen to be well within the range of values cited in the literature. Based on these calculations, we conclude that: (1) under normal conditions, approximately one-half of the fetal uterine-umbilical venous oxygen partial pressure difference can be attributed to placental oxygen consumption; (2) utilization of fetal oxygen to help maintain the metabolic activities of the placenta does not significantly impair fetal oxygenation under normal conditions; (3) consumption of oxygen by the placenta will have a significant detrimental effect on the rate of oxygen delivered to the fetus if oxygen availability is compromised; and (4) for the same rate of maternal oxygen delivered to the placenta, maternal hypoxemia has a significantly greater adverse effect on fetal oxygenation than does maternal anemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call