Abstract

Classical radiation interception laws for monospecific canopies cannot be used directly for bispecific canopies. They are always based on the gap frequency concept (i.e., the probability of no interception), which does not provide any information about the sharing of intercepted radiation between species. A theoretical analysis is reported that relates the radiation interception probabilities to the geometrical structure of the crop (i.e., the leaf area density and the leaf angle distribution of each component) and the foliage dispersion. The leaf dispersion globally describes the spatial relations between the leaf elements; it may be regular if the leaves avoid mutual shading, random, or clumped if they tend to overlap. For such two-species canopies, the leaf dispersions within each component (WSLD: within-species leaf dispersion) and between two species (BSLD: between-species leaf dispersion) are distinguished. Using bivariate multinomial distributions, general expressions for the gap frequency and the interception probabilities of a homogeneous vegetation layer were set as exponential functions of the foliage thickness, taking into account a number of dispersion parameters as small as possible. First, one WSLD for each species describes the rate of foliage overlap between the leaves of this species; it is quite similar to the leaf dispersion of single-species canopies. Second, the rate of foliage overlap between species is characterized by one BSLD. As in monospecific canopies, this parameter is positive, zero, or negative, respectively, for regular, random, or clumped BSLD. Third, another BSLD parameter has to be used if the foilage overlap between species is more than random (i.e., in the case of clumped BSLD); the latter shows the direction of overlap between species and may be taken as the probability of finding a leaf element of the first species in the case of marked overlapping. Suggestions for estimating the leaf dispersion parameters and possible uses of such relations are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.