Abstract

This paper presents a theoretical analysis of the auxetic plied yarn (APY) structure formed with two types of single yarns having different diameter and modulus. A model which can be used to predict its deformation behavior under axial extension is developed based on the theoretical analysis. The developed model is first compared with the experimental data obtained in the previous study, and then used to predict the effects of different structural and material parameters on the auxetic behavior of the APY. The calculation results show that the developed model can correctly predict the variation trend of the auxetic behavior of the APY, which first increases and then decrease with the increase of the axial strain. The calculation results also indicate that the auxetic behavior of the APY simultaneously depends on the diameter ratio of the soft yarn and stiff yarn as well as the ratio between the pitch length and stiff yarn diameter. The study provides a way to design and fabricate APYs with the same auxetic behavior by using different soft and stiff yarns as long as these two ratios are kept unchanged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call