Abstract

AbstractCation‐π interactions are theoretically investigated for alkali metal cation (M+)‐circumcoronene (CC) complexes (M = Li, Na, K), in gas phase and in aqueous solution with consideration of micro‐ and global solvation models using the DFT/PBEh‐3c‐RI/TZVP method. The solvent effect on the M+–CC energy interaction regarding the cation size and the stability of inner‐ and outer‐sphere [M(H2O)n]+–CC complexes are calculated by means of geometry optimizations and potential energy (PE) curves. The PE curves, calculated as a function of perpendicular distance of M+ to the CC plane, predicted one energy minimum for each of the isolated M+–CC complexes. However, for microhydrated complexes, two minima assigned to two different surface complexations were obtained. Microhydrated Li+ and Na+ favored outer‐sphere complexation while inner‐sphere complexation was found more stable for microhydrated K+. These results illustrate nicely the key role, which the cation radius plays for the polarization of the water molecules and the aromatic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.