Abstract
ABSTRACTTo construct a water quality monitoring system, challenging issues need to be addressed regarding the acquisition of target information (e.g. 3D location and occlusion) as well as the behavioural analysis of aquatic organisms. This paper presents a novel 3D information acquisition and location method, by means of an information acquisition platform consisting of a monitoring terminal, frame grabbers, a single camera and a single mirror. Using this platform, we propose a theoretical 2D image model for locating 3D targets and then validate it using data obtained from both real and artificial fish. The proposed model is based on the principles of light refraction, plane mirror imaging, underwater objects and camera imaging as well as the technologies of digital to analog conversion and object segmentation. In contrast with existing methods, our method can accurately reflect 3D information of aquatic organisms, thus providing critical technical support for the development of water quality monitoring systems in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.