Abstract

Human gut microbiome could translocate to other tissues, and the relocation triggered by HIV/SIV infection has received increasing attention. However, the underlying mode of this translocation, whether it is deterministic or random (passive) process, is not clear, not to mention quantitative estimation of the relocation probability and rates. Using multi-tissue microbiome datasets collected from SIV-infected macaques, originally reported by Klase etal. (2015), we apply Hubbell's unified neutral theory of biodiversity (UNTB) implemented by Harris etal. (2017) in the form of multi-site neutral (MSN) model to explore the translocation mode and rates of the gut microbiome. We found that (i) The translocation from gastrointestinal tract to tissues was driven by stochastic (neutral) forces as revealed by 100% neutrality-passing rates with MSN testing; (ii) The translocation probability from gastrointestinal tract to tissues is significantly larger than the baseline dispersal rates occurring within gastrointestinal tract (0.234vs. 0.006 at the phylum level, P< 0.001). (iii) Approximately, 23% of phyla and 55% of genera were migrated from gastrointestinal tract to the tissues (liver and mesenteric lymph nodes). Our findings offer the first interpretation of the microbial translocation mode from gastrointestinal tract to tissues, and the first estimates of the translocation probability and level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call