Abstract
Deterministic evolution equations of classical as well as quantum mechanical models are derived from a set of non-Markovian stochastic evolution equations after an average over realization using a theorem. Examples are given, show that deterministic differential equations that contain derivatives with respect to time higher than or equal to two can be derived after a Taylor series expansion of the dynamical variables. It is shown that the derivation of such deterministic differential equations can be done by solving a set of linear equations that increase in number after increasing the number of previous time steps in the updating rules that define a given model. Two explicit examples, the first containing updating rules that depend on two previous time steps and the second on three, are worked in some detail in order to show some features of the linear transformation that allow one to obtain the deterministic differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.