Abstract

This paper proposes a novel unsupervised, non-Gaussian, and contextual segmentation method that combines an advanced statistical distribution with spatial contextual information for multilook polarimetric synthetic aperture radar (PolSAR) data. This extends on previous studies that have shown the added value of both non-Gaussian modeling and contextual smoothing individually or for intensity channels only. The method is based on a Markov random field (MRF) model that integrates a <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</i> -Wishart distribution for the PolSAR data statistics conditioned to each image cluster and a Potts model for the spatial context. Specifically, the proposed algorithm is constructed based upon the stochastic expectation maximization (SEM) algorithm. A new formulation of SEM is developed to jointly perform clustering of the data and parameter estimation of the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">K</i> -Wishart distribution and the MRF model. Experiments on simulated and real PolSAR data demonstrate the added value of using an appropriate statistical representation, in combination with contextual smoothing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.