Abstract

The research on automatic hypertext construction emerges rapidly in the last decade because there exists a urgent need to translate the gigantic amount of legacy documents into web pages. Unlike traditional 'flat' texts, a hypertext contains a number of navigational hyperlinks that point to some related hypertexts or locations of the same hypertext. Traditionally, these hyperlinks were constructed by the creators of the web pages with or without the help of some authoring tools. However, the gigantic amount of documents produced each day prevent from such manual construction. Thus an automatic hypertext construction method is necessary for content providers to efficiently produce adequate information that can be used by web surfers. Although most of the web pages contain a number of non-textual data such as images, sounds, and video clips, text data still contribute the major part of information about the pages. Therefore, it is not surprising that most of automatic hypertext construction methods inherit from traditional information retrieval research. In this work, we will propose a new automatic hypertext construction method based on a text mining approach. Our method applies the self-organizing map algorithm to cluster some at text documents in a training corpus and generate two maps. We then use these maps to identify the sources and destinations of some important hyperlinks within these training documents. The constructed hyperlinks are then inserted into the training documents to translate them into hypertext form. Such translated documents will form the new corpus. Incoming documents can also be translated into hypertext form and added to the corpus through the same approach. Our method had been tested on a set of at text documents collected from a newswire site. Although we only use Chinese text documents, our approach can be applied to any documents that can be transformed to a set of index terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.