Abstract

Porphyrins are attractive chromophores for incorporation into light harvesting devices. Some of the most efficient porphyrin derivatives in this regard are synthetically complex platforms with specially tailored electronic properties. This work details the unique geometric and electronic structure of the phlorin framework. X-ray crystallography and NMR spectroscopy demonstrate that unlike typical tetrapyrrole macrocycles, the phlorin is not aromatic. These unusual electronics are manifest in distinct photophysical and redox properties, as the phlorin displays a rich multielectron redox chemistry. The phlorin also displays an intriguing supramolecular chemistry and can reversibly bind up to two equivalents of fluoride in cooperative fashion. Accordingly, this synthetically accessible sensitizer displays a rich multielectron redox chemistry, excellent spectral coverage and an intriguing anion binding chemistry that distinguishes this system from more commonly studied porphyrinoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.