Abstract

AbstractEther‐based electrolytes show great potential in low‐temperature lithium metal batteries (LMBs) for their low viscosity and decent reduction stability. However, conventional ethers with multidentate chelate sites suffer from low oxidation stability and high desolvation energy barrier due to the strong coordination between oxygen and Li+. Herein, cyclic tetrahydropyran (THP) with a unidentate site is designed as a solvent, and fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) serve as additives for low‐temperature LMBs. The cyclic strain and unidentate chelate effect endow THP with a weak affinity to Li+ ions, which accelerates Li+ desolvation process and induces the anion‐derived electrode/electrolyte interface at low temperature. The formed inorganic‐rich interface further improves the oxidation stability and expedites the interfacial ion transportation. As a result, the assembled Li‐LiNi0.8Mn0.1Co0.1O2 (NMC811) cell stably cycles with 87% capacity retention after 100 cycles at −40 °C and 4.5 V. The 2.7 Ah Li‐NMC811 pouch cell with an energy density of 403 Wh kg−1 delivers 53% of the room‐temperature capacity at −50 °C. This work reveals that regulating the chelate site of solvents can well optimize the electrolytes to realize low‐temperature LMBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.