Abstract

Spermatogenesis is precisely controlled by hormones from the hypothalamus–pituitary–gonadal axis and testis-specific genes, but the regulatory mechanism is not fully understood. Recently, a large number of long non-coding RNAs (lncRNAs) are found to be transcribed at each stage of meiosis of male germ cells, and their functions in spermatogenesis have yet to be fully investigated. lncRNA-testicular cell adhesion molecule 1 (lncRNA-Tcam1) is a nuclear lncRNA which is specifically expressed in mouse male germ cells and presumed to play a role in gene regulation during meiosis. Here, we present the identification of potential target genes of lncRNA-Tcam1 using spermatocyte-derived GC-2spd(ts) cells. Initially, 55 target gene candidates were detected by RNA-sequencing of two GC-2spd(ts) cell clones that were stably transfected with transgenes to express lncRNA-Tcam1 at different levels. Expression of 21 genes of the candidates was found to be correlated with lncRNA-Tcam1 at 7–14 postnatal days, when lncRNA-Tcam1 expression was elevated. Subsequently, we examined expression levels of the 21 genes in other two GC-2spd(ts) clones, and 11 genes exhibited the correlation with lncRNA-Tcam1. Induction of lncRNA-Tcam1 transcription using the Tet-off system verified that six genes, Trim30a, Ifit3, Tgtp2, Ifi47, Oas1g, and Gbp3, were upregulated in GC-2spd(ts) cells, indicating that lncRNA-Tcam1 is responsible for the regulation of gene expression of the six genes. In addition, five of the six genes, namely, Ifit3, Tgtp2, Ifi47, Oas1g, and Gbp3, are immune response genes, and Trim30a is a negative regulator of immune response. Altogether, the present study suggests that lncRNA-Tcam1 is responsible for gene regulation for the immune response during spermatogenesis.

Highlights

  • Spermatogenesis is a process to generate spermatozoa, composed of meiosis and spermiogenesis (1, 2)

  • We compared the gene expression levels between GC-2spd-Full and GC-2spd-Δprom, and picked proteincoding genes that were expressed at lower levels than 0.1-fold in GC-2spd-Full as candidate genes negatively regulated by long non-coding RNAs (lncRNAs)-Tcam[1], and those expressed at higher levels than fivefold in GC-2spd-Full as positively regulated genes

  • Among various mouse and human tissues, the testis contains large numbers of lncRNAs (15, 16), as evidenced by recent transcriptomic analyses identifying many lncRNAs in different postnatal testes or fractionated germ cells (51–53). Their functions in spermatogenesis are largely unknown in mammals, and we revealed the upregulation of gene expression of immunerelated genes by mouse male germ cell-specific lncRNA-Tcam[1] using spermatocyte-derived GC-2spd(ts) cells as a model

Read more

Summary

Introduction

Spermatogenesis is a process to generate spermatozoa, composed of meiosis and spermiogenesis (1, 2). Some population of spermatogonia differentiate into spermatids, and the spermatids change their shapes to become spermatozoa through spermiogenesis. This process is controlled by the hypothalamus–pituitary–gonadal axis. Various long non-coding RNAs (lncRNAs) have been identified in the testis (15, 16), and some of them were shown to be upregulated by sex steroids (17–21). These findings suggest that lncRNAs are involved in the regulation of spermatogenesis. The physiological significance of lncRNAs and the molecular mechanisms of their actions in the testis are largely unknown

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.