Abstract

Shockmounts in naval applications are used to mount technical equipment onto the structure of naval vessels. The insulating effect against mechanical shock is important here, as it can excite the structure in the event of underwater explosions and otherwise cause damage to the equipment. Although knowledge of the dynamic properties of shockmounts is important to naval architects, the dynamic force-displacement characteristics of shockmounts are often tested and measured statically and/or in the harmonic field. Recently, an inertia-based method and a dynamic model for measuring the dynamic force-displacement characteristics of shockmounts was described. This paper presents a full description of a testbench for implementing this method. The testbench incorporates a drop table for excitation. The proposed setup can be configured for measuring the dynamic characteristics of elastomer and wire rope shockmounts, with shock loads in compression, tension, shear and roll directions. The advanced Kelvin–Voigt model for shockmounts is applied, showing that the dynamic force-displacement characteristics measured with this setup are qualified to generate model parameters for further use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.