Abstract
The paper presents a static test rig called “Octopus” designed for the validation of numerical models aimed at calculating the nonlinear dynamic response of a bladed disk with underplatform dampers (UPDs). The test rig supports a bladed disk on a fixture and each UPD is pressed against the blade platforms by wires pulled by dead weights. Both excitation system and response measurement system are noncontacting. The paper features the design and the set-up of the noncontacting excitation generated by electromagnets placed under each blade. A travelling wave excitation is generated according to a desired engine order by shifting the phase of the harmonic force of one electromagnet with respect to the contiguous exciters. Since the friction phenomenon generated by UPDs introduces nonlinearities on the forced response, the amplitude of the exciting force must be kept constant at a known value on every blade during step-sine test to calculate Frequency Response Functions. The issue of the force control is therefore addressed since the performance of the electromagnet changes with frequency. The system calibration procedure and the estimated errors on the generated force are also presented. Examples of experimental tests that can be performed on a dummy integral bladed disk (blisk) mounted on the rig are described in the end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.