Abstract
This paper concerns the modeling of multi-way functional data where double or multiple indices are involved. We introduce a concept of weak separability. The weakly separable structure supports the use of factorization methods that decompose the signal into its spatial and temporal components. The analysis reveals interesting connections to the usual strongly separable covariance structure, and provides insights into tensor methods for multi-way functional data. We propose a formal test for the weak separability hypothesis, where the asymptotic null distribution of the test statistic is a chi-square type mixture. The method is applied to study brain functional connectivity derived from source localized magnetoencephalography signals during motor tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.