Abstract

The mean density approximation for mixture radial distribution functions plays a central role in modern corresponding-states theories. This approximation is reasonably accurate for systems that do not differ widely in size and energy ratios and which are nearly equimolar. As the size ratio increases, however, or if one approaches an infinite dilution of one of the components, the approximation becomes progressively worse, especially for the small molecule pair. In an attempt to better understand and improve this approximation, isothermal molecular dynamics simulations have been performed on a series of Lennard-Jones mixtures. Thermodynamic properties, including the mixture radial distribution functions, have been obtained at seven compositions ranging from 5 to 95 mol%. In all cases the size ratio was fixed at two and three energy ratios were investigated, ɛ22/ɛ11=0.5, 1.0, and 1.5. The results of the simulations are compared with the mean density approximation and a modification to integrals evaluated with the mean density approximation is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.