Abstract
Vertical mixing by the tides plays a key role in controlling water column structure over the seasonal cycle in shelf seas. The influence of tidal stirring is generally well represented as a competition between surface buoyancy input and the production of turbulent kinetic energy (TKE) by frictional stresses, a competition which is encapsulated in the Qh/ u 3 criterion. An alternative control mechanism arises from the limitation of the thickness of the bottom boundary layer due to the effects of rotation and the oscillation of the flow. Model studies indicate that, for conditions typical of the European shelf seas, the energy constraint exerts the dominant control but that for tidal streams with large positive polarisation (i.e. anti-clockwise rotation of velocity vector), some influence of rotation in limiting mixing should be detectable. We report here measurements of flow structure (with ADCPs) and turbulent dissipation (FLY Profiler) made at two similar locations in the Celtic Sea which differ principally in that the tidal currents rotate in opposite senses with approximately equal magnitude (polarity P=±0.6). A clear contrast was observed between the two sites in the vertical structure of the currents, the density profile and the rate of dissipation of TKE. At the positive polarity (PP) site ( P≈+0.6), the bottom boundary layer in the tidal flow was limited to ∼20 mab (metre above the bed) and significant dissipation from bottom boundary friction was constrained within this layer. At the negative polarity (NP) site ( P≈−0.6), the dominant clockwise rotary current component exhibited a velocity defect (i.e. reduction relative to the free stream) extending into the upper half of the water column while significant dissipation was observed to penetrate much further up the water column with dissipation levels ∼10 −4.5 W m −3 reaching to the base of the pycnocline at 70–80 mab. These contrasting features of the vertical distribution of dissipation are well reproduced by a 1-D model when run with windstress and tidal forcing and using the observed density profile. Model runs with reversed polarity at the two sites, support the conclusion that the observed contrast in the structure of tidal velocity, dissipation and stratification is due to the influence of tidal stream polarity. Increased positive polarity reduces the upward penetration of mixing which allows the development of stronger seasonal stratification, which, in turn, further inhibits vertical mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.