Abstract
Identification in most sample selection models depends on the independence of the regressors and the error terms conditional on the selection probability. All quantile and mean functions are parallel in these models; this implies that quantile estimators cannot reveal any—per assumption non-existing—heterogeneity. Quantile estimators are nevertheless useful for testing the conditional independence assumption because they are consistent under the null hypothesis. We propose tests of the Kolmogorov–Smirnov type based on the conditional quantile regression process. Monte Carlo simulations show that their size is satisfactory and their power sufficient to detect deviations under plausible data-generating processes. We apply our procedures to female wage data from the 2011 Current Population Survey and show that homogeneity is clearly rejected. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.