Abstract

ABSTRACTAs researchers increasingly rely on linear mixed models to characterize longitudinal data, there is a need for improved techniques for selecting among this class of models which requires specification of both fixed and random effects via a mean model and variance-covariance structure. The process is further complicated when fixed and/or random effects are non nested between models. This paper explores the development of a hypothesis test to compare non nested linear mixed models based on extensions of the work begun by Sir David Cox. We assess the robustness of this approach for comparing models containing correlated measures of body fat for predicting longitudinal cardiometabolic risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.