Abstract

Abstract A common concern when faced with multivariate data with missing values is whether the missing data are missing completely at random (MCAR); that is, whether missingness depends on the variables in the data set. One way of assessing this is to compare the means of recorded values of each variable between groups defined by whether other variables in the data set are missing or not. Although informative, this procedure yields potentially many correlated statistics for testing MCAR, resulting in multiple-comparison problems. This article proposes a single global test statistic for MCAR that uses all of the available data. The asymptotic null distribution is given, and the small-sample null distribution is derived for multivariate normal data with a monotone pattern of missing data. The test reduces to a standard t test when the data are bivariate with missing data confined to a single variable. A limited simulation study of empirical sizes for the test applied to normal and nonnormal data suggests th...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.