Abstract

Senescence is a nearly universal feature of multicellular organisms, and understanding why it occurs is a long-standing problem in biology. The two leading theories posit that aging is due to (i) pleiotropic genes with beneficial early-life effects but deleterious late-life effects ("antagonistic pleiotropy") or (ii) mutations with purely deleterious late-life effects ("mutation accumulation"). Previous attempts to distinguish these theories have been inconclusive because of a lack of unambiguous, contrasting predictions. We conducted experiments with Drosophila based on recent population-genetic models that yield contrasting predictions. Genetic variation and inbreeding effects increased dramatically with age, as predicted by the mutation theory. This increase occurs because genes with deleterious effects with a late age of onset are unopposed by natural selection. Our findings provide the strongest support yet for the mutation theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call