Abstract

ABSTRACT This paper takes PA research on organizational performance in a new direction by testing a configurational model using self-organizing maps, a machine learning methodology. The model was built and tested using six performance dimensions from 2017 Federal Employee Viewpoint Survey (FEVS). Four distinct performance profiles or groups were identified: very low performers, average performers, transitional performers, and high performers. Implications for theory development and practice of configurational models of public organizational performance were discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.