Abstract

Testing for the equality of regression coefficients across two regressions is a problem considered by analysts in a variety of fields. If the variances of the errors of the two regressions are not equal, then it is known that the standard large sample F-test used to test the equality of the coefficients is compromised by the fact that its actual size can differ substantially from the stated level of significance in small samples. This article addresses this problem and borrows from the literature on the Behrens-Fisher problem to provide some simple modifications of the large sample test which allows one to better control the probability of committing a Type I error. Empirical evidence is presented which indicates that the suggested modifications provide tests which are superior to well-known alternative tests over a wide range of the parameter space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.