Abstract

Group II introns are self-splicing RNAs that are commonly found in the genes of plants, fungi, yeast and bacteria. Little is known about the tertiary structure of group II introns, which are among the largest natural ribozymes. The most conserved region of the intron is domain 5 (D5), which, together with domain 1 (D1), is required for all reactions catalysed by the intron. Despite the importance of D5, its spatial relationship and tertiary contacts to other active-site constituents have remained obscure. Furthermore, D5 has never been placed directly at a site of catalysis by the intron. Here we show that a set of tertiary interactions (lambda-lambda') links catalytically essential regions of D5 and D1, creating the framework for an active-site and anchoring it at the 5' splice site. Highly conserved elements similar to components of the lambda-lambda' interaction are found in the eukaryotic spliceosome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.