Abstract
Mechanistic bioaccumulation models for fish and piscivorous food-webs are widely used to assess the environmental hazard and risk of commercial chemicals, develop water quality criteria and remediation objectives, and conduct exposure assessment of pesticides in aquatic systems. Similar models for mammals and terrestrial food-webs are largely absent. As a result, the hazards and risks of bioaccumulative substances in mammals, birds, and humans remain unrecognized by regulators, and current globally used criteria for identifying bioaccumulative substances only apply to water-breathing organisms and are inadequate for protecting air-breathing organisms including mammals, birds, and human beings. In this paper, we develop and test a modeling framework that can be used to estimate the biomagnification potential and the organism-soil bioaccumulation factor of organic commercial chemicals in terrestrial food-chains. We test the model for the soil-earthworm-shrew food-chain and apply the model to illustrate that (i) chemicals with an octanol-air partition coefficient (K(OA)) < 10(5.25) do not biomagnify even if the K(ow) is high and optimal for biomagnification in fish; (ii) chemicals with a K(OA) > or = 105.25 and a K(ow) between 10(1.75) and 10(12) have a biomagnification potential unless they are metabolized at a sufficiently rapid rate (e.g., in excess of 0.3 d(-1) or a half-life time of 2.5 d for shrews).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.