Abstract

Here we demonstrate a ternary Cu2NiZn alloy substrate for controllably synthesizing monolayer graphene using a liquid carbon precursor cyclohexane via a facile CVD route. In contrast with elemental metal or bimetal substrates, the alloy-induced synergistic effects that provide an ideal metallic platform for much easier dehydrogenation of hydrocarbon molecules, more reasonable strength of adsorption energy of carbon monomer on surface and lower formation energies of carbon chains, largely renders the success growth of monolayer graphene with higher electrical mobility and lower defects. The growth mechanism is systemically investigated by our DFT calculations. This study provides a selective route for realizing high-quality graphene monolayer via a scalable synthetic method by using economic liquid carbon supplies and multialloy metal substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.