Abstract

Terminal, nondirectional ionic "multiple" bond interactions between group 15 elements and rare-earth metals (Ln) have remained a challenging target until present. Although reports on terminal imide species have accumulated in the meantime, examples of terminal congeners with the higher homologue phosphorus are yet elusive. Herein, we present the synthesis of the first terminal yttrium organophosphinidene complex, TptBu,MeY(═PC6H3iPr2-2,6)(DMAP)2, according to a double-deprotonation sequence previously established for organoimides of the smaller rare-earth metals. Subsequent deprotonation of the primary phosphane H2PC6H3iPr2-2,6 (H2PAriPr) with discrete dimethyl compound TptBu,MeYMe2 in the presence of DMAP under simultaneous methane elimination generated a terminal multiply bonded phosphorus. The primary phosphide intermediates TptBu,MeYMe(HPAriPr) and TptBu,MeYMe(HNPAriPr)(DMAP) are isolable species and were also obtained and fully characterized for holmium and dysprosium. The Lewis acid-stabilized yttrium phosphinidene TptBu,MeY[(μ2-PAriPr)(μ2-Me)AlMe2] was obtained by treatment of H2PAriPr with TptBu,MeYMe(AlMe4) but could not be converted into a terminal phosphinidene via cleavage of trimethylaluminum. The corresponding reaction of H2PAriPr with TptBu,MeYMe(GaMe4) led to adduct [GaMe3(PH2AriPr)] rather than to the formation of a yttrium phosphinidene. The yttrium-phosphorus interaction in the obtained organophosphide and phosphinidene complexes was scrutinized by 31P/89Y NMR spectroscopy and DFT calculations, unambiguously supporting the existence of multiple bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call