Abstract
We report a novel and simple approach to realize terahertz (THz) dynamic two-dimensional (2D) beam steering and forming antennas, based on reconfigurable photo-induced Fresnel zone plates (PI-FZPs). The FZPs are formed by directly illuminating a high-resistivity silicon wafer with the desired patterns using a digital light processing (DLP) projector, without any circuit or device fabrication. At 750 GHz, the THz beam from a diagonal horn antenna has been steered two dimensionally over a range from approximately −12° to +12° from the antenna boresight, by projecting different PI-FZP patterns. In addition, using PI-FZPs with different focal lengths, the THz beam size can be dynamically tuned. Both the beam steering and forming can be performed simultaneously without affecting the antenna performance, making this an enabling technology for emerging THz applications such as sensing, imaging, tracking, adaptive wireless communications and short-range high-speed interconnections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.