Abstract

Based on a local examination of the phase transition front, a macroscopic second order tensor describing the thermodynamic force for the phase transformation is proposed. Consequently, an associated thermodynamic flux is introduced. These tensorial variables are embedded into a material law which describes the behavior of steels during the austenite–martensite phase transformation. The material law is implemented into a finite element formulation. Homogeneous tests in pure tension/compression and torsion are performed to verify the behavior of the material law. Due to the independent modeling of the behavior of the phases, the influence of the yield stress of the austenite on the transformation kinetics can be verified. A classical example is presented to show the ability of the model to calculate large structural problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call