Abstract
As a micro engineered biomimetic system to replicate key functions of living organs, organs-on-a-chip (OC) technology provides a high-throughput model for investigating complex cell interactions with a high temporal and spatial resolution in biological studies. Typically, microscopy and highspeed video cameras are used for data acquisition, which are expensive and bulky. Recently, compressed sensing (CS) has increasingly attracted attentions due to its extremely low-complexity structure and low sampling rate. However, there is no CS solution tailored for tempo-spatial information acquisition. In this paper, we propose Tempo-Spatial CS (TS-CS), a unified CS architecture for OC stream which achieves significant cost reduction and truly combines sensing with compression along the temporal and spatial domains. We point out that TS-CS can consistently achieve better performance by exploiting tempo-spatial compressibility in OC data. To this end, we present TS-CS architecture and comprehensively evaluate the system performance. With comparison to the traditional way, we show that TS-CS always obtains better recovery result with a throughput bound and can achieve around 25% throughput improvement under a reconstruction demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.