Abstract

The numerical solutions for uncertain viscoelastic problems have important theoretical and practical significance. The paper develops a new approach by combining the scaled boundary finite element method (SBFEM) and fuzzy arithmetic. For the viscoelastic problems with zero uncertainty, the SBFEM and the temporally piecewise adaptive algorithm is employed in the space domain and the time domain, respectively, in order to provide an accurate semi-analytical boundary-based approach and to ensure the accuracy of discretization in the time domain with different sizes of time step at the same time. The fuzzy arithmetic is used to address the uncertainty analysis of viscoelastic material parameters, and the transformation method is used for computation with the advantages of effectively avoiding overestimation and reducing the computational costs. Numerical examples are provided to test the performance of the proposed method. By comparing with the analytical solutions and the Monte Carlo method, satisfactory results are achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.