Abstract

Air toxicity and pollution phenomena are on the rise across the planet. Thus, the detection and control of gas pollution are nowadays major economic and environmental challenges. There exists a wide variety of sensors that can detect gas pollution events. However, they are either gas-specific or weak in the presence of gas mixtures. This paper handles this issue by presenting method based on a Temporal-based Support Vector Machine for for the detection and identification of several toxic gases in a gas mixture. The considered gases are carbon monoxide (CO), ozone (O3) and nitrogen dioxide (NO2). Furthermore, an incremental algorithm is proposed in this paper for the selection of the best performing kernel function in terms of accuracy and simplicity of implementation. Then, a decision-making algorithm based on the rate of appearance of a class on a moving window is proposed to improve decision making in presence of uncertainties. This algorithm allows the user to master the false-alarms and no-detection dilemma, and quantify the level of confidence attributed to the decision. Experimental results, obtained with different gas mixtures, show the effectiveness of the proposed approach with 100% of accuracy in the learning and testing stages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.