Abstract

This paper describes the design of a CMOS temperature-to-digital converter (TDC). It operates by measuring the temperature-dependent phase shift of an electrothermal filter (ETF). Compared to previous work, this TDC employs an ETF whose layout has been optimized to minimize the thermal phase spread caused by lithographic inaccuracy. To minimize electrical phase spread, the TDC's front-end consists of a wide bandwidth gain-boosted transconductor. The transconductor's output current is then digitized by a phase-domain SigmaDelta modulator whose phase-summing node is realized by a chopper demodulator. To minimize the residual offset caused by the demodulator's switching action, the demodulator is located at the virtual ground nodes established by the transconductor's gain-boosting amplifiers. Measurements on 16 samples (within one batch) show that the TDC has an untrimmed inaccuracy of less than plusmn0.7degC (3sigma) over the military range (-55degC to 125degC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.