Abstract

A temperature-sensitive mutant, designated ts85, was isolated from a mouse mammary carcinoma cell line, FM3A. The ts85 cells grew at 33 °C (permissive temperature) with a doubling time of 18 h, which was almost the same as with wild-type cells, whereas the cell number scarcely increased at all at 39 °C (non-permissive temperature). When the ts85 cells were shifted from 33 to 39 °C, their DNA synthesis fell to below 1% of the initial value in 14 h. RNA or protein synthesis, however, was maintained at the initial levels for at least 14 h at 39 °C. Cytofluorometric analysis of asynchronous cultures and studies with synchronous cultures suggested that the bulk of the cells cultured at 39 °C for 12–18 h were arrested in late S and G2 phases. Electron microscopic observations revealed that chromatin was abnormally condensed into fragmented and compact forms, particularly around nucleoli, in about 80% of cells of an asynchronous culture incubated at 39 °C for 16 h. Cells in mitosis were not detected in such cultures and nuclear membrane and nucleoli were still intact. Such abnormal chromosome condensation was not observed in the ts85 cells at 33 °C or in wild-type cells at either temperature. Since these findings suggest that a ts gene product of ts85 cells is necessary for chromosome condensation, ts85 cells may represent a useful tool for establishing the mechanisms of chromosome condensation. The interrelationship between abnormal chromosome condensation and reduction in DNA synthesis of the ts85 cells is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call