Abstract

Fast and highly efficient enrichment and separation of glycoproteins is essential in many biological applications, but the lack of materials with high capture capacity, fast, and efficient enrichment/separation makes it a challenge. Here, a temperature-responsive core cross-linked star (CCS) polymer with boronate affinity is reported for fast and efficient enriching and separating of glycoproteins from biological samples. The temperature-responsive CCS polymers containing boronic acid in its polymeric arms and poly(N-isopropyl acrylamide) in its cross-linked core are prepared using reversible addition-fragmentation chain transfer polymerization via an "arm-first" methodology. The soluble boronate polymeric arms of the CCS polymers provide a homogeneous reaction system and facilitate interactions between boronic acid and glycoproteins, which leads to a fast binding/desorption speed and high capture capacity. Maximum binding capacity of the prepared CCS polymer for horseradish peroxidase is determined to be 210 mg g-1 , which can be achieved within 20 min. More interestingly, the temperature-responsive CCS polymers exhibit rapid reversible thermal-induced volume phase transition by increasing the temperature from 15 to 30 °C, resulting in a facile and convenient sample collection and recovery for the target glycoproteins. Finally, the temperature-responsive CCS polymer is successfully applied to enrichment of low abundant glycoproteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call