Abstract

Dual emission from thermally activated delayed fluorescence (TADF) emitters is often difficult to observe, especially in solution, limited by Kasha's rule. Two TADF dendrimers containing N-doped polycyclic aromatic hydrocarbons as acceptors are designed and synthesized. Compound 2GCzBPN, having a strongly twisted geometry, exhibits TADF, while 2GCzBPPZ, possessing a less twisted geometry, shows dual emission associated with the monomer and aggregate that is TADF. The demonstration reveals that 2GCzBPPZ can serve as a temperature sensor with excellent temperature sensitivity and remarkably wide emission color response in solution. By embedding 2GCzBPPZ in paraffin we demonstrate a spatial-temperature sensor that shows a noticeable emission shift from yellow to green and ultimately to blue as the temperature increases from 20 to 200 °C. We finally demonstrate the utility of these TADF dendrimers in solution-processed organic light-emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.