Abstract

The advancement of aqueous zinc-ion batteries (AZIBs) is often hampered by the dendritic zinc growth and the parasitic side reactions between the zinc anode and the aqueous electrolyte, especially under extreme temperature conditions. This study unveils the performance decay mechanism of zinc anodes in harsh environments, characterized by "dead zinc" at low temperatures and aggravated hydrogen evolution and adverse by-products at elevated temperatures. To address these issues, a temperature self-adaptive electrolyte (TSAE), founded on the competitive coordination principle of co-solvent and anions, is introduced. This electrolyte exhibits a dynamic solvation capability, engendering an inorganic-rich solid electrolyte interface (SEI) at low temperatures while an organic alkyl ether- and alkyl carbonate-containing SEI at elevated temperatures. The self-adaptability of the electrolyte significantly enhances the performance of the zinc anode across a broad temperature range. A Zn//Zn symmetrical cell, based on the TSAE, showcases reversible plating/stripping exceeding 16800 h (>700 d) at room temperature under 1mA cm-2 and 1 mAh cm-2, setting a record of lifespan. Furthermore, the TSAE enables stable operation of the zinc full batteries across an ultrawide temperature range of -35 to 75°C. This work illuminates a pathway for optimizing AZIBs under extreme temperatures by fine-tuning the interfacial chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.