Abstract
It is considered that hydrophobic solutes dissolve in water via the formation of icelike cages in the first hydration shell. However, this conventional picture is currently under debate. We have investigated how hydrophobic species, such as D2, Ne, Ar, Xe, CH4, and C3H8, interact with water in composite films of amorphous solid water (ASW) based on temperature programmed desorption (TPD). The D2 and Ne species tend to be incorporated in ASW without being caged, whereas two distinct peaks assignable to the caged species are identifiable for the other solutes examined here. The low-temperature peak is observed preferentially for Ar and CH4 prior to crystallization. The hydrophobes are thought to be encapsulated in porous ASW films via reorganization of the hydrogen bond network up to 100 K; most of them are released in a liquidlike phase that occurs immediately before crystallization at ca. 160 K. The nature of hydrophobic hydration at cryogenic temperature appears to differ from that in normal water at room temperature because the former resembles crystalline ices in the local hydrogen-bond structure rather than the latter. No ordered structures assignable to clathrate hydrates were identified before and after crystallization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.