Abstract

Vertical temperature profiles influence the wind power generation of large offshore wind farms through stability-dependent effects such as blockage and gravity waves. However, wind energy resource assessments often only consider idealized temperature profiles, which are not guaranteed to represent the atmospheric state and its variation. To assist the selection of atmospheric states, we created a temperature profile atlas and representative temperature profiles for Europe. To achieve this, we developed a new, generally applicable, analytical temperature model for the atmospheric boundary layer and lower troposphere with which the European temperature profiles over the period 2016-2020 are analyzed using a double clustering approach. This methodology results in eight representative profiles and spatial clusters with similarly behaving temperature profiles, which are quantified in cluster fingerprints. These representative profiles and cluster fingerprints can be used in the selection of background profiles for wind energy simulations such as LES models and can furthermore be used to make informed comparisons of results from different wind farm sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.