Abstract

A new temperature compensation method is proposed and demonstrated in this paper for cavities and filters realized in substrate integrated waveguide (SIW). The SIW structures largely preserve the well-known advantages of conventional rectangular waveguide, namely, high Q and high power capacity, and have the advantages of microstrip lines, such as low profile, small volume, and light weight. In this paper, we demonstrate that by an adequate selection of substrate properties, SIW cavities can provide self-temperature drift compensation. The compensation is achieved by using an appropriate ratio between the coefficient of thermal expansion and the thermal coefficient of the permittivity. The theoretical prediction is confirmed by an experimental investigation using inductive post filters. Three commercially available substrates are used to design cavities at 10 GHz with the Roger TMM10 substrate providing a close fit to the required characteristics for temperature compensation. The results for the cavity show a stability of 2 ppm/°C in calculation and 8 ppm/°C in measurement. A SIW fourth-order Chebyshev filter, centered at 10 GHz with 1-GHz bandwidth, has also been designed. The measured frequency drift is 9.1 ppm/°C and the bandwidth variation is 0.13% over the temperature range of 40°C to 80°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.