Abstract

Lakes Waihola and Waipori are shallow, coastal, tidal lakes that experience wind‐induced sediment resuspension, saline intrusions, and high inputs of nutrients. To determine the influence of externally‐driven, physical factors on spatial and temporal patterns of water quality in the two lakes, meteorological, hydrological, and water quality data were collected over 1 year. Multivariate analyses indicated that wind energy was driving the main water quality gradient in the lakes, which was primarily related to wind‐induced resuspension of lake sediments. The major, seasonally regulated, non‐tidal freshwater inflow was important in determining nutrient and salinity gradients in the lakes. The main nutrient inputs to the system were identified as the regulated, non‐tidal inflow (the upper Waipori River) and the tidal inflow (lower Waipori River). The impact of water quality gradients on zooplankton community structure in the lakes was assessed by canonical multivariate methods. Salinity gradients, caused by seasonal saltwater intrusions, were strongly related to zooplankton community structure in the lakes. Nutrient gradients (indicative of trophic state) were also related to zooplankton community structure. Although wind‐induced sediment resuspension had the largest impact on water quality in the lakes, it had little impact on the zooplankton community structure in either lake. The relationships between water quality and zooplankton community structure were confounded in Lake Waipori because of its very short hydraulic residence time (annual mean =1.9 days). Zooplankton community structure was resilient to short‐term changes in suspended particulate matter concentrations but not to seasonal changes in salinity. The results of this study support others which have shown impacts of even relatively small variations in salinity on the structure of zooplankton communities. This highlights the vulnerability of zooplankton communities in coastal lakes and wetlands to increasing salinity resulting from sea level rise and global climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.