Abstract
BackgroundLarge-scale, polymerase chain reaction (PCR)-based SARS-CoV-2 testing is expensive, resource intensive, and time consuming. A self-collection approach is a probable alternative; however, its feasibility, cost, and ability to prevent infections need to be evaluated.ObjectiveThis study aims to compare an innovative self-collection approach with a regular SARS-CoV-2 testing strategy in a large European industrial manufacturing site.MethodsThe feasibility of a telemedicine-guided PCR-based self-collection approach was assessed for 150 employees (intervention group) and compared with a regular SARS-CoV-2 testing approach used for 143 employees (control group). Acceptance, ergonomics, and efficacy were evaluated using a software application. A simulation model was implemented to evaluate the effectiveness. An interactive R shiny app was created to enable customized simulations.ResultsThe test results were successfully communicated to and interpreted without uncertainty by 76% (114/150) and 76.9% (110/143) of the participants in the intervention and control groups, respectively (P=.96). The ratings for acceptability, ergonomics, and efficacy among intervention group participants were noninferior when compared to those among control group participants (acceptability: 71.6% vs 37.6%; ergonomics: 88.1% vs 74.5%; efficacy: 86.4% vs 77.5%). The self-collection approach was found to be less time consuming (23 min vs 38 min; P<.001). The simulation model indicated that both testing approaches reduce the risk of infection, and the self-collection approach tends to be slightly less effective owing to its lower sensitivity.ConclusionsThe self-collection approach for SARS-CoV-2 diagnosis was found to be technically feasible and well rated in terms of acceptance, ergonomics, and efficacy. The simulation model facilitates the evaluation of test effectiveness; nonetheless, considering context specificity, appropriate adaptation by companies is required.
Highlights
The results shown in the table can be interpreted as follows: given the assumptions described in the Methods section, a test strategy using a SARS-COV-2 polymerase chain reaction (PCR) test with a sensitivity of 90% and featuring a turnaround time of 1 day has the potential to decrease the risk of infection posed by undetected but infectious workers onsite by 17.89%
Given the comparable rates of successful communication of test results in both the study groups, our data show that the telemedicine-guided self-collection approach for SARS-CoV-2 diagnostics, including registration, swab self-collection, shipping, and communication of SARS-CoV-2 PCR test result, is technically feasible
This study provides evidence that a telemedicine-guided self-collection approach for SARS-CoV-2 diagnostic testing is technically feasible, and this approach is favorably rated in terms of acceptance, ergonomics, and efficiency
Summary
MethodsNumerous campaigns for COVID-19 vaccination have been initiated worldwide, but the pandemic continues to spread. Emerging variants of SARS-CoV-2, as well as reports of breakthrough infections, underline that public health mitigation measures, including testing strategies, need to be continued. The implementation of professional, large-scale routine testing is limited owing to high organizational costs and intensive efforts entailed. The authorization of lateral-flow SARS-CoV-2 antigen tests enables the implementation of self-testing strategies (ie, self-testing approach), which improves the turnaround times of test results. Due to the absence of amplification steps, the analytic sensitivity of lateral-flow antigen tests is substantially inferior to that of a NAAT-based approach, when the viral load is low in early or late stages of disease progression [2]. Large-scale, polymerase chain reaction (PCR)-based SARS-CoV-2 testing is expensive, resource intensive, and time consuming. A self-collection approach is a probable alternative; its feasibility, cost, and ability to prevent infections need to be evaluated
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.