Abstract

A thermoelectric generator (TEG) efficiency booster with buck–boost conversion and power management is proposed as a TEG battery power conditioner suitable for a wide TEG output voltage range. An inverse-coupled inductor is employed in the buck–boost converter, which is used to achieve smooth current with low ripple on both the TEG and battery sides. Furthermore, benefiting from the magnetic flux counteraction of the two windings on the coupled inductor, the core size and power losses of the filter inductor are reduced, which can achieve both high efficiency and high power density. A power management strategy is proposed for this power conditioning system, which involves maximum power point tracking (MPPT), battery voltage control, and battery current control. A control method is employed to ensure smooth switching among different working modes. A modified MPPT control algorithm with improved dynamic and steady-state characteristics is presented and applied to the TEG battery power conditioning system to maximize energy harvesting. A 500-W prototype has been built, and experimental tests carried out on it. The power efficiency of the prototype at full load is higher than 96%, and peak efficiency of 99% is attained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.