Abstract

A technology for catalytic hydroprocessing of oil residues – atmospheric residue and vacuum residue – aimed to obtain high value added petrochemicals, particularly marine fuel complying with modern technical and environmental requirements, is reported. The technologyis based on the use of catalysts supported on alumina with a hierarchical structure of meso- and macropores, which are highly active and stable under severe conditions of the process. Data obtained by physicochemical analysis of the chemical composition, textural and phase properties of fresh and spent catalysts for the three-step hydroprocessing of atmospheric residue and vacuum residue are presented. A material balance for each step of the processes and a comprehensive analysis of the properties of produced petrochemicals were used to propose variants of implementing and integrating the technology at Russian oil refineries in order to increase the profit from oil refining. The introduction of the hydroprocessing of atmospheric residue at oil refineries without secondary processes will improve the economic efficiency due to selling the atmospheric residue by 84–170 % depending on a chosen scheme of the process and a required set of products. It is reasonable to integrate the catalytic hydroprocessing of vacuum residue with the delayed coking, catalytic cracking and hydrocracking processes in order to increase the depth of refining to 95 % and extend the production of marketable oil refining products: gasoline, diesel fuel, marine fuel with the sulfur content below 0.5 %, and low-sulfur refinery coke for the electrode industry. The integration of the hydroprocessing of vacuum residue with the secondary processes will increase the economic efficiency from selling the vacuum residue by a factor of 2–2.5 in comparison with its production in delayed coking units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call