Abstract

A technology based on the effect of low-frequency vibrations on the respiratory system is a promising approach to increasing the functional reserves of the human body. To implement such a technology, it is necessary to justify the optimal modes of bioacoustic stimulation of the respiratory system. Therefore, the aim of the study was a theoretical and experimental justification of the technology to increase the functional reserves of the body based on bioacoustic stimulation of the respiratory system. Acoustic impedance was measured on a polyharmonic sound signal in the frequency range from 3 Hz to 51 Hz with a step of 3 Hz in all three phases of respiration: a full breath with a breath hold, a deep breath with a breath hold and free nasal surface breathing without a delay. After determining the resonant frequencies of the respiratory tract for two weeks, six sessions of bioacoustic stimulation were conducted on a group of 20 testers, including placebo exposure. In the exposure group, the sound pressure level was 130 dB, and in the control group - 60 dB, which is below the audibility threshold at these frequencies. Six-fold exposure to a scanning tone signal with a sound pressure level of 130 dB led to an increase in the resonant frequency of the respiratory system, a decrease in the absorption coefficient of sound vibrations by the respiratory system, and an increase in the resistance of the respiratory system to the sound wave. These effects can be explained by the fact that, as a result of exposure, reserve alveoli were discovered and the cross-sectional area of the alveolar passages and respiratory bronchioles increased. An analysis of the results of experiments in both groups in the dynamics of six stimulation sessions suggests that their values for the control group of testers practically did not change at all periods of observation. At the same time, similar indicators in the exposure group have a significant difference from the background values. It was shown that, in order to increase the functional reserves of the body, two bioacoustic stimulation treatments can be sufficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.