Abstract

In this study, we developed a techno-economic model to estimate the production cost of renewable diesel and gasoline from aspen woodchips through fast pyrolysis-based bio-oil and its subsequent hydroprocessing. The whole pathway includes the conversion of woodchip biomass to bio-oil through fast pyrolysis followed by upgrading to transportation fuels via hydroprocessing. Experiments were carried out to develop for the process model. This detailed process and techno-economic study was done based on 2000 dry t day−1 aspen woodchips (base case capacity), from which we estimated the cost to produce renewable diesel and gasoline. For this base case, using the present method, 148.81 ML year−1 of renewable diesel and 99.21 ML year−1 of gasoline using merchant hydrogen can be produced. The production costs of renewable diesel and gasoline for 2000 t day−1 are 1.09 and 1.04$ L−1, respectively. We also studied the effect of changing the scale of the facility from 500 to 5000 t day−1 on the production costs of renewable diesel and gasoline. The economic optimum plant size (the capacity at which fuel production cost is lowest) was determined to be 3000 t day−1. Finally, we carried out sensitivity and uncertainty analyses for the base case and determined that production cost is most sensitive to bio-oil yield and internal rate of return (IRR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call